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NOVEL VERTICAL INTERCONNECTS

WITH 180 DEGREE PHASE SHIFT

FOR AMPLIFIERS, FILTERS, AND
INTEGRATED ANTENNAS

Kavita Goverdhanam, 1 Rainee N. Simons,-' and Linda P.B. Katehi 3

Abstract - In this paper, novel low loss, wide bandwidth, compact
coplanar stripline/coplanar waveguide vertical interconnects with
180° phase shift and vertically interconnected baluns for
RF/microwave integrated circuits are demonstrated. The
interconnects and baluns are fabricated on high resisfiviD' silicon
wafer with a thin layer of spin-on-glass as an insulator between
the buried and the elevated strip conductors which are
interconnected by microvias. The measured and simulated
characteristics of these interconnects are presented and they show
that very compact, low loss and wide bandwidth circuits are
feasible with this technology. This technology has the potential to
significantly enhance the performance of amplifiers, rdtet_, and
integrated antennas in Si/SiGe based RF/mierowave ICs.

I. INTRODUCTION

Silicon/silicon germanium (Si/SiGe) based RF/microwave
integrated circuits (ICs) [1] for wireless communications/
sensors require linear amplifiers for low distortion and
filters for interference suppression. In some situations they
may also require an integrated planar antenna for

transmission/reception, in applications such as automobile
collision avoidance. The amplifiers may require a balun to
realize a push-pull circuit to suppress the second-order
intermodulation products and thus enhance the spurious
free dynamic range. The filters may require a phase inverter
for impedance transformation. The antenna such as, log-
periodic dipole array may require a fixed 180 ° phase shift
for generating an endfire beam.

In this paper, we present several new integrated circuit
design concepts for: (a) wide bandwidth vertical
interconnects with 180 ° phase shift and (b) vertically
interconnected baluns. These interconnects and baluns are

fabricated on a high resistivity (HR) silicon wafer. The
vertical interconnects discussed here constitute a small

section of coplanar stripline (CPS) and coplanar waveguide
(CPW) at two levels separated by a thin layer of spin-on-
glass (SOG). The interconnections between the two levels
are realized by metallized vias. The CPS and CPW have the
advantages of eliminating backside processing due to
uniplanar construction, thus simplifying vertical integration
by the use of metallized vias. In addition, CPS and CPW
allow easy integration of other transmission media, such as,
slotline, and micro-CPS [2] for greater design flexibility.
The SOG has the advantage of low dielectric constant [3]
and hence low parasitic coupling capacitance. In addition,

JBellLaboratories,Lucent Technologies, Murray Hill, NewJersey 07974
:NASA Glenn Research Center, QSS, Inc., Cleveland, Ohio 44135
3University of Michigan, Radiation Laboratory,EECS Department,
Ann Arbor, Michigan 48109-2122

the SOG planarizes the circuit and this facilitates vertical
integration [4]. The HR silicon wafer (9 > 3000 £2 cm) has
the advantage of lowering the signal attenuation in addition
to improving the isolation between adjacent circuits.

In the following sections, first, the fabrication process is
briefly explained. This is followed by a discussion of the
design considerations, measured insertion loss and return
loss of the CPS vertical interconnects with 180 ° phase shift.
The interconnects considered are: (a) CPS vertical
interconnect with 180 ° phase shift, (b) CPW vertically
interconnected by CPS overpass and with 180 ° phase shift,
(c) CPW vertical interconnect with 180 ° phase shift and
(d) CPS-to-elevated CPW balun. The numerical simulations

of the circuits are carried out using the CST microwave
studio TM'. In the simulations, the CPS and CPW conductors

are assumed to be perfectly conducting. In addition, the
silicon substrate as well as the SOG layer are considered as
perfect dielectrics.

II. INTERCONNECT FABRICATION

As a first step in fabricating the aforementioned
interconnects, the buried strip conductors are fabricated on
the HR silicon wafer. The strip conductors are fabricated
using a lift-off process. The thickness of the titanium/gold
metal is about 0.8 _tm. Next, a thin insulating spacer layer
to support the elevated strip conductors is built-up to the
required thickness using multiple spin-coats of Accuglass ®
512. The thickness hj of the SOG used here is about
2.0 p.m. Following this, the vias for the vertical interconnect
are patterned using photoresist and dry etched in a
fluorocarbon-based plasma. Finally, the elevated strip
conductors are fabricated with titanium/gold by a second
lift-off process. During this step the via holes are metallized
to ensure electrical continuity between the buried and the
elevated strip conductors. The thickness of the elevated
strip conductor is about 2.0 pm. The cross-sections of the
CPS and CPW with a SOG overlay are shown in Fig. 1.

III. DESIGN, RESULTS AND DISCUSSIONS

The design considerations for the via hole and probe pads
required for each of the aforementioned interconnects are as
follows: each via has a diameter d which is about 0.75 times

the strip width S and is symmetrically located on the strip
conductor. The probe pads in the case of CPS circuits for
on-wafer characterization using signal-ground RF probes
are about 100×100 btm in size. In the case of CPW circuits,

*RegisteredTrademark of CST of America, Inc.,Wellesley, MA.
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Figure 1 .---Coplanar stripline (CPS) and Coplanar
waveguide (CPW) on a HR-silicon wafer with a

SOG overlay, h = 400 p.m, Er = 11.7, hI = 2 txm,
Erl = 3.1.

the center strip conductor as well as the ground planes are

extended to form the probe pads. These CPW interconnects

are characterized using ground-signal-ground RF probes.

The length of the CPS and the CPW between the

input/output ports of the circuit and the probe pads is

700 I.tm for all the circuits investigated here. The losses

associated these connecting lines and the probe pads are de-

embedded using on-wafer CPS and CPW Thru-Reflect-Line

(TRL) calibration standards. The coplanar stripline and

coplanar waveguide circuits investigated here are uniplanar

in construction and hence do not have a ground plane on the

opposite side of the wafer. Therefore, the wafer is

supported on a Styrofoam TM block, instead of the regular

metal vacuum chuck, in the RF probe station while

measuring the S-parameters.

A. CPS vertical interconnect with 180°phase shift:

A schematic and microphotograph of the circuit are shown

in Figs. 2(a) and 2(b), respectively. In this circuit, the strip

conductors are transposed to provide the 180 ° phase shift.

This type of inter-connect is ideally suited for adding a

180 ° phase shift to the terminals of each element in a

log-periodic array as explained in [5]. The characteristic

impedance Z_cPs _is 50 _2.

The measured (de-embedded) and simulated insertion loss

(S__) and return loss (S_) are better than -0.5 dB and

-20.0 dB respectively over the frequency range of 3 to

18 GHz (Fig. 3). The numerical simulations of this circuit

show that the insertion loss is negligibly small and the
return loss is better than -18.0 dB across the 3 to 18 GHz

frequency range. The measured phase difference between

the CPS vertical interconnect with 180 ° phase shift and a

CPS through line of equivalent length is shown in Fig. 4.

The phase difference is 180 ° at the center frequency of

10.5 GHz and deviates from 180 ° by 8 ° at the two band

edges which are at 3 and 18 GHz respectively. The phase is
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Figure 2.--(a) CPS vertical interconnect with 180 ° phase
shift Wl = 65 ixm, $1 = 5 ttm, d = 40 _m, L = 265 ttm,

L1 = 282.1 i_m. (b) Microphotograph of CPS vertical
interconnect with 180"r phase shift.
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Figure 3.---Measured (De-embedded) and simulated

insertion loss ($21) and return loss ($11) of CPS
vertical interconnect with 180 ° phase shift.
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A schematic and microphotograph of the circuit are shown in

Figs. 5(a) and 5(b), respectively. The characteristic

impedance Zc_ces, and Z_cr_. _ are 50 K). The measured (de-

embedded) and simulated insertion loss (S__1) and the return

loss (Sjj) are shown in Fig. 6. The insertion loss and the

return loss are better than -1.0 dB and -17.5 dB respectively

up to 6.0 GHz which includes the ISM bands. The maximum
insertion loss of the circuit is -1.75 dB. The measured return

loss is better than -13 dB across the entire frequency range of

3 to 18.0 GHz. The discrepancies in the measured and

modeled S-parameters are attributed to the simplifications in

the simulated geometry. Specifically, the compensating
notches in the elevated lines were not included.

C. CPW vertical interconnect with 180°phase shift:

A schematic and microphotograph of the circuit are shown

in Figs. 7(a) and 7(b), respectively. The line has a

characteristic impedance Z0_cPw, = 50 f2. The measured

(de-embedded) and simulated insertion loss (S_) and the

return loss (S_) are better than -1.0 dB and -15.5 dB

respectively up to 6.5 GHz. The measured return loss is

better than -11 dB across the entire frequency range of 3 to

18.0 GHz. These characteristics are shown in Fig. 8. As in

case B, the discrepancies between measured and simulated

S-parameters are attributed to the absence of compensating
notches in the simulations.

D. CPS-to-elevated CPW balun with vertical

interconnecL_."

In this circuit shown in Fig. 9, the CPS and the elevated
CPW are fabricated on the HR silicon wafer and on the

SOG layer respectively. One of the strip conductors of the

CPS is extended below the SOG layer to form the buried

center strip conductor of the CPW, while the other CPS

strip conductor is terminated in a via. This via provides a

vertical interconnection to the elevated finite width ground

planes of the CPW. The elevation or the height provides an

Figure 5.---(a) CPW vertically interconnected by CPS
overpass with 180 _ phase shift. W = 34 ixm,

G = 239 ixm, S = 54 p_m, S 1 = 4 i_m, d = 40 ixm,

W 1 = 54 ixm, L = 300 _m. (b) Microphotograph of

CPW vertical interconnectd by CPS overpass.
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Figure 6._Measured (De-embedded) and simulated
insertion loss ($21) and input return loss ($11) for
CPW vertically interconnected by CPS overpass
and with 180 _ phase shift.
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Figure 8.--Measured (De-embedded) and simulated

insertion loss ($21) and input return loss ($11) for CPW
vertical interconnect with 180 ° phase shift.
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Figure 9._PS to CPW balun with burried center strip

conductor and vertical interconnects W = 34 p.m,
G = 239 p.m, S = 54 p.rn, $1 = 4 p.m, W 1 = 54 p.m,
d = 40 p.m.

additional design parameter which can be used first, to

obtain a target Z0, and second, to lower the attenuation as

explained in [6]. The characteristic impedance Zo, c_s, and

Z_c_,m are both 50 f2. The results for this structure will be

presented at the conference.

II. CONCLUSIONS

Novel vertical interconnects with 180 ° phase shift and

vertically interconnected balun for integrated circuit

applications at RF/microwaves frequencies have been
demonstrated. The vertical interconnects have small

dimensions compared to the wavelength of operation,

resulting in low parasitics. The CPS vertical interconnect

with 180 ° phase shift has almost ideal performance with

low loss, good impedance match, and very wide bandwidth

extending from 3 to 18 GHz. The CPW vertical

interconnects have low loss and good impedance match up
to 6.5 GHz which includes the ISM bands. The results

presented demonstrate the potential of the vertical

interconnects with 180 ° phase shift/baluns for amplifiers,

filters and integrated antennas in Si/SiGe based
RF/microwave ICs.
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